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Key processes of the water cycle

Soil moisture: Variable 
representing reservoir of water on 
land;  controls the exchanges of 
water and energy between the land 
and atmosphere; affects 
evapotranspiration, runoff, 
infiltration. 

Soil moisture levels are related to 
water resource applications; plant 
growth, water stress, droughts, 
floods

Snow: Another variable 
representing reservoir of water on 
land; intimately affects runoff, 
infiltration. 

In many mid-latitude and high-
altitude regions, the seasonal 
water storage and associated 
spring melt dominate the local 
hydrology. 

Different forms of 
precipitation: Rain, 
snow, hail, fog, drip, 
graupel, sleet

Many of the water 
related problems are 
related to the fact that 
precipitation is not 
evenly distributed in 
space and time

Transformation of water from liquid 
to gas phase

Transpiration: water taken up by the 
plants released to the atmosphere

Difficult to separate the processes of 
evaporation and transpiration; often 
called evapotranspiration

Water escapes through the stomata (small pores 
on the leaves). Plants regulate the rate of 
transpiration by controlling the size of stomata

Under water stress conditions, plants would 
close the stomata to conserve energy

Infiltration: Some of the 
precipitation on land seeps into 
the ground to be stored in 
aquifers, transported to lakes and 
streams through subsurface flow

Runoff: Water that does not infiltrate the soil runs off 
across the surface into streams, rivers, lakes. 

Runoff and infiltration contribute to natural hazards such 
as floods

Groundwater/aquifer: water 
stored in the saturated zone. The 
top of the aquifer is called water 
table

Groundwater accounts for almost 
33% of total water withdrawals 
worldwide; Key as a strategic 
reserve in times of drought; often 
ignored in management decisions.  



Challenges of water cycle monitoring

Technique Advantages Disadvantages

In-situ measurements “Real” data Labor intensive; quality 
control issues; spatial 
interpolation

Remote sensing Spatial coverage Resolution; Sensing
limitations; retrieval 
errors

Numerical model Choose any region or 
time period; Economical

Quality limited by input; 
difficulty representing 
complex processes



Precipitation: Surface Gages and Doppler Radar

Radiation: DOE-ARM, Mesonets, USDA-ARS

Surface Temperature: DOE-ARM, Mesonets, NWS-ASOS, USDA-ARS

Soil Moisture: DOE-ARM, Mesonets, Global Soil Moisture Data Bank, 
USDA-ARS

Groundwater: Well Observations

Snow Cover, Depth & Water: Field Experiments, SNOTEL

Streamflow: Real-Time Stream Gauge

Vegetation: Field Experiments

Soils: Field Experiments

Land Surface Observations: in-situ



Snow water equivalent
(AMSR-E, SSM/I, 

SCLP)

Land surface temperature 
(MODIS, AVHRR,GOES,… )

Precipitation 
(TRMM, GPM)

Radiation 
(CERES, CLARREO )

Vegetation/Carbon 
(AVHRR, MODIS, DESDynI, 

ICESat-II, HyspIRI, LIST, 
ASCENDS )

Surface soil moisture 
(SMMR, TRMM, AMSR-E, 
SMOS, Aquarius, SMAP)

Terrestrial water storage (GRACE)

Water surface elevation 
(SWOT)

Snow cover fraction 
(MODIS, VIIRS, MIS)

Satellite observations



What are “Land surface models”?

Land surface models solve for the interaction of energy, momentum and mass 
between the surface and the atmosphere

Estimates fluxes, land conditions (soil moisture, snow, runoff, …)

e.g. : Noah, CLM, VIC, Catchment, JULES …



How do we combine the information 
from satellite observations and 

models? 

Models Observations

+

Data assimilation is the method used to incorporate 

observational data into model forecasts

Like a “sleepy-driver” 
scenario



Land Data Assimilation Systems (LDASs)

Philosophy: Use best available observations to inform 
models

NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov) - infrastructure that enables LDASs

Used in several US and international agencies, universities 
for research and applications (Famine early warning, crop 
forecasts, water resources management, …)

http://lis.gsfc.nasa.gov


Land Information System (LIS; lis.gsfc.nasa.gov)

Resolution ¼ deg 1 km

Land Grid Points 2.43E5 1.44E8

Disk Space/day (Gb) 1 700

Memory (Gb) 3 1500

A system to study land surface processes 
and land-atmosphere interactions

“Use best available observations” to 
constrain and inform models.

Runs a variety of land surface models 

Integrates satellite, ground and 
reanalysis data 

Includes high performance support for 
fine resolution modeling

Built as a flexible framework that allows 
the interoperable use of data and models 

Coupled to other Earth system models

Includes a number of computational 
subsystems for exploiting information 
from observations. 

Kumar, S.V., C.D. Peters-Lidard, Y. Tian, P.R. Houser, J.Geiger, S. Olden, L.Lighty,J.L. 
Eastman, B. Doty, P.Dirmeyer, J. Adams, K. Mitchell, E.F. Wood, J. Sheffield (2006), 
Land Information System – An Interoperable Framework for Land Surface Modeling, 
Environmental Modeling and Software, 21, 1402—1415. 



Kumar, S.V., C.D. Peters-Lidard, J.L. Eastman, W.-K. Tao (2007), An integrated High Resolution Hydrometeorological Modeling Testbed using LIS 
and WRF, Environmental Modeling and Software, 23(2), 169-181. 

Computational subsystems and coupled models with LIS
LIS - OPT/UE

Optimization and Uncertainty Estimation

(LM, SCE-UA,GA, RW-MCMC, DEMC)

Land Surface Models (Noah, 

CLM, VIC, Catchment, JULES, 

Sacramento, CABLE), Lake 

models (FLake)
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Data Assimilation subsystem in LIS

Kumar, S.V., R.H. Reichle, C.D. Peters-Lidard, R.D. Koster, X. Zhan, W.T. Crow, J.B. Eylander, P.R. Houser (2008), A Land Surface Data Assimilation 
Framework using the Land Information System: Description and Applications, Adv. Wat. Res., 31, 1419-1432.

Primarily used for state estimation - Corrects model states 
based on observations

Advanced algorithms such as the Ensemble Kalman Filter 
(EnKF), Ensemble Kalman Smoother (EnKS)

Supports the interoperable use of multiple land surface 
models, multiple algorithms and multiple observational data 
sources

Support for concurrent data assimilation, forward models, 
radiance assimilation, observation operators employing 
advanced data fusion methods (deep learning) 

CLM

Noah

Catch

Mosaic
Stronger coupling between 

surface and root zone anomalies

CLM

Noah

Catch

Mosaic
Stronger coupling between 

surface and root zone anomalies

Stronger coupling 
between surface and 
root zone provides 
more “efficient”
assimilation of 
surface observations.
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1.0
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0.6

VCS (Truth)

NIC (root-zone)

NIC = normalized 
information 
contribution

VCS = vertical coupling 
strength



An Integrated Terrestrial Water Analysis System 

enabled by LIS

A unique analysis that concurrently employs a comprehensive set of remote sensing 
measurements to constrain terrestrial water budget terms in the NLDAS configuration, 
using LIS-DA capabilities. 

SOIL MOISTURE:  Daily 
soil moisture based from 

SMMR, SSM/I, AMSR-E, ASCAT, 
SMOS, Aquarius, AMSR2, 

SMAP

Terrestrial Water 
Storage: Monthly TWS 
anomalies from GRACE

Irrigation 
Intensity:
from MODIS

SNOW: Snow depth 
measurements from SMMR, 

SSM/I, AMSR-E, AMSR2, snow 
cover measurements from 

MODIS, AVHRR, VIIRS

Water surface 
elevation:

from satellite altimetry 
(SWOT, Jason, ICESat2)

Vegetation: from 
MODIS, VIIRS



NLDAS configuration
Model domain: Continental 
United States (CONUS) at 1/8th

degree spatial resolution, 
including parts of 
Canada/Mexico (25-53°N; 
125-67°W)

Forcing data: NLDAS-phase 
II (NLDAS2)
meteorological forcing data. 

Models: Noah LSM version 3.3, 
and CLSM Fortuna 2.5: a 60-
year spin-up, followed by 34 
years of simulation; streamflow 
simulations using HyMAP 
(Getirana et al. 2012)

Data assimilation method: 
1-d Ensemble Kalman Filter 
(EnKF) and 3-d Ensemble 
Kalman Smoother (EnKS)

Time period: Jan 1, 1979 to 1 
Jan 2013. 

Boxes with solid lines 
represent products that are 
currently assimilated, 
dashed boxes represent 
products in pipeline1980 1985 1990 1995 2000 2005 2010 2015
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Assimilation of  remotely sensed soil moisture measurements in 

NLDAS (Univariate assimilation)

Impact of soil moisture DA on 

soil moisture skills

Impact of soil moisture DA on 

streamflow skills (Warm colors 

indicate locations where DA provides 

improvement in streamflow NSE and 

cool colors indicate locations where 

DA leads to degradation in 

streamflow NSE)

Impact of soil moisture DA on 

drought estimates (May 10-17, 2011). 

Anomaly
R

Open loop
(no DA)

Soil moisture
DA 

Vs ARS CalVal
(surface)

0.84 +/- 0.02 0.86 +/- 0.02

Vs SCAN 
(surface)

0.67 +/- 0.02 0.67 +/- 0.02

Vs SCAN 
(root zone)

0.60 +/- 0.02 0.59 +/- 0.02

Kumar, S.V., C.D. Peters-Lidard, D. Mocko, R. Reichle, Y. Liu, K. Arsenault, Y. Xia, M. Ek, G. Riggs, B. Livneh, M. Cosh: 2014 

Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. Journal of Hydrometeorology, 15, 2446-2469, 

doi: http://dx.doi.org/10.1175/JHM-D-13-0132.1

The impact of assimilating soil moisture retrievals from SMMR, SSMI, 

AMSR-E, ASCAT into the Noah LSM during a time period of 1979-2012.
USD

M

OL

SM-DA

Improvements in soil moisture fields are barely at the statistically significant levels

Small improvements in streamflow

Improvements in drought estimates at short time scales are seen from soil moisture DA



Assimilation of  remotely sensed snow depth and snow cover 

measurements in the NLDAS (Univariate assimilation)

Kumar, S.V., C.D. Peters-Lidard, K.R. Arsenault, A. Getirana, D. Mocko, Y. Liu: 2015 

Quantifying the added value of snow cover area observations in passive microwave snow depth data assimilation

Journal of Hyrometeorology, in press, doi:10.1175/JHM-D-15-0021.1

Quantify the added impact of using snow covered area (SCA) from MODIS during the assimilation of passive 

microwave snow depth observations. 

Average seasonal cycle of RMSE and Bias for snow depth 

from the open loop (OL) and DA integrations Differences in NSE of streamflow estimates from the use 

of MODIS SCA over passive microwave data alone

The use of MODIS data provides systematic improvements in snow depth fields over the assimilation 
of passive microwave data alone. 

These improvements are translated to improvements in streamflow, especially in the western U.S. 



Impact of LDA 

on drought 

estimates 

(Sep, 2012). US drought 

monitor

Multivariate assimilation of satellite-derived remote sensing datasets  in 
the National Climate Assessment LDAS

The concurrent, multivariate assimilation of various 
terrestrial hydrological datasets (soil moisture, snow 
depth, snow cover, terrestrial water storage, irrigation 
intensity) has been demonstrated for the NCA LDAS. 

LSM based 

drought estimate

LSM based drought 

estimate with data 

assimilation

SOIL MOISTURE:  Daily soil 
moisture based from SMMR, 

SSM/I, AMSR-E, ASCAT, SMOS, 
Aquarius, AMSR2

Terrestrial 
Water Storage: 

Monthly TWS 
anomalies from 

GRACE

Irrigation 
Intensity:
from MODIS

SNOW: Snow depth 
measurements from SMMR, 

SSM/I, AMSR-E, AMSR2, snow 
cover measurements from 

MODIS, AVHRR, VIIRS

Noah

CLSM

Noah

CLSM

Multivariate assimilation of satellite 
remote sensing datasets are helpful in 
improving water budget components, 
including streamflow

Kumar et al. (2014):Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation, J. Hydromet., 10.1175/JHM-D-13-
0132.1

Kumar et al. (2016): Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data Assimilation System, J. 
Hydromet., 10.1175/JHM-D-15-0157.1



Optimization subsystem in LIS
Data Assimilation is primarily a state estimation technique. It only “adjusts” model states, 

does not correct inherent model behavior

Use observational information to estimate model parameters; another 
way to use observations for informing models

Lucky 
Hills Ken

dall

Case study from Santanello et 
al. (2007)

SCE-UA
Genetic

Algorithm

(Good for convex problems)
(Good for non-convex 

problems)

Random search Deterministic search

Levenberg -
Marquardt 

Site 1: Lucky Hills Site 5: Kendall

Model parameters 
calibrated using passive 
(L-band) microwave 
remote sensing (using 
NASA’s push broom 
microwave radiometer -
PBMR)  

Kumar, S.V., R.H. Reichle, K.W. Harrison, C.D. Peters-Lidard, S. Yatheendradas, J.Santanello (2012), A comparison of methods for a priori bias 
correction in soil moisture data assimilation, WRR, 48(3),doi:10.1029/2010WR010261.



Uncertainty estimation (UE) subsystem in LIS

Land surface model predictions are subject to uncertainties in model parameters, input 
forcing and model structure

Posterior prediction – Uncertainty estimation incorporates different sources of 
uncertainty in reproducing observed behavior 

Knowledge of uncertainty can help in the risk assessment for decision making (e.g. 
uncertainty in soil moisture predictions can be used in deciding irrigation practices). 

Preposterior analysis – Bayesian analysis can be used to investigate the value of data from 
proposed missions, suitable for OSSEs. 

A range of UE algorithms –

Monte Carlo propagation

Random Walk Markov Chain Monte Carlo (RW-
MCMC)

Differential Evolution Monte Carlo (DEMC)

MCMC algorithms revise input uncertainties based 
on information from observations

Harrison, K.E., S.V. Kumar, J.A. Santanello, C.D. Peters-Lidard (2012), Quantifying the change in soil moisture modeling uncertainty from remote 
sensing observations using Bayesian inference techniques, WRR, 48(11), 7489-7504.



Posterior parameter distributions – DEMC



Probabilistic prediction

LIS

a) b)

• Value of remote sensing = 
reduction in uncertainty

• Needed input to assessing 
value of proposed missions 
(basis of OSSEs) 

prior=blue (MC-SIM)    posterior=red 
(DEMC)

a. The soil moisture time series with all 
sample fits (θ); curve is the median 
across fits.

b. The probabilistic forecast of soil 
moisture for the final time step



Human impacts from expansion of agriculture and infrastructure have significantly 
(>50%) transformed the natural features of the land surface 

IV

55

Figure 25.  Human activities and structures, as depicted 

by the distribution of various examples in the concep-

tual landscape, affect the interaction of ground water 

and surface water in all types of landscapes.

Remote sensing: 
practical method to 

observe these 
‘unmodeled’ features 

Land surface models 
: fairly utopian; hard 

to realistically 
represent subjective 

practices

Value of remote sensing data assimilation



Summary

Land Data Assimilation Systems have been developed for central North 
America (NLDAS, NCA-LDAS), Africa (FLDAS) and the globe (GLDAS)

The common goal of these projects is to integrate all relevant data in a 
physically consistent manner within sophisticated land surface models to 
produce optimal estimates of hydrological states (e.g. soil moisture, surface 
temperature) and fluxes (e.g. runoff, evapotranspiration)

The Land Information System (LIS) is an efficient and configurable software 
that can be used to specify an instance of LDAS

LDASs have been used for water availability applications including 
drought/flood monitoring, agricultural management, weather and climate 
initialization. 


